Modeling tree water deficit from microclimate: an approach to quantifying drought stress.

نویسندگان

  • R Zweifel
  • L Zimmermann
  • D M Newbery
چکیده

Tree water deficit estimated by measuring water-related changes in stem radius (DeltaW) was compared with tree water deficit estimated from the output of a simple, physiologically reasonable model (DeltaWE), with soil water potential (Psisoil) and atmospheric vapor pressure deficit (VPD) as inputs. Values of DeltaW were determined by monitoring stem radius changes with dendrometers and detrending the results for growth. We followed changes in DeltaW and DeltaWE in Pinus sylvestris L. and Quercus pubescens Willd. over 2 years at a dry site (2001-2002; Salgesch, Wallis) and in Picea abies (L.) Karst. for 1 year at a wet site (1998; Davos, Graubuenden) in the Swiss Alps. The seasonal courses of DeltaW in deciduous species and in conifers at the same site were similar and could be largely explained by variation in DeltaWE. This finding strongly suggests that DeltaW, despite the known species-specific differences in stomatal response to microclimate, is mainly explained by a combination of atmospheric and soil conditions. Consequently, we concluded that trees are unable to maintain any particular DeltaW. Either Psisoil or VPD alone provided poorer estimates of DeltaW than a model incorporating both factors. As a first approximation of DeltaWE, Psisoil can be weighted so that the negative mean Psisoil reaches 65 to 75% of the positive mean daytime VPD over a season (Q. pubescens: approximately 65%, P. abies: approximately 70%, P. sylvestris: approximately 75%). The differences in DeltaW among species can be partially explained by a different weighting of Psisoil against VPD. The DeltaW of P. sylvestris was more dependent on Psisoil than that of Q. pubescens, but less than that of P. abies, and was less dependent on VPD than that of P. abies and Q. pubescens. The model worked well for P. abies at the wet site and for Q. pubescens and P. sylvestris at the dry site, and may be useful for estimating water deficit in other tree species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying water stress in canola (Brassica napus L.) using crop water stress index

The relationship between canopy temperature and soil moisture is particularly important because of using canopy temperature as an indicator of crop water stress. A field experiment was conducted to calculate crop water stress index (CWSI) of two canola cultivars including RGS and Sarigol at College of Agriculture and Natural Resources of Darab, Shiraz University, Iran during 2013-2014 growing s...

متن کامل

Determination of Crop Water Stress Index for Irrigation Scheduling of Turfgrass (Cynodon dactylon L. Pers.) under Drought Conditions

Abstract The crop water stress index (CWSI) is a valuable tool for monitoring and quantifying water stress as well as for irrigation scheduling. A field experiment was conducted during spring and summer 2012 at Research Station of College of Agriculture and Natural Resources of Darab, Shiraz University, Iran, to determine CWSI of  turfgrass for irrigation scheduling. Four levels of water regime...

متن کامل

Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model.

Dynamics in microclimate and physiological plant traits were studied for Pubescent oak and Scots pine in a dry inner-alpine valley in Switzerland, at a 10 min resolution for three consecutive years (2001-2003). As expected, stomata tended to close with increasing drought in air and soil. However, stomatal aperture in oak was smaller than in pine under relatively wet conditions, but larger under...

متن کامل

Water relations and microclimate around the upper limit of a cloud forest in Maui, Hawai'i.

The goal of this study was to determine the effects of atmospheric demand on both plant water relations and daily whole-tree water balance across the upper limit of a cloud forest at the mean base height of the trade wind inversion in the tropical trade wind belt. We measured the microclimate and water relations (sap flow, water potential, stomatal conductance, pressure-volume relations) of Met...

متن کامل

Climate change-induced water stress suppresses the regeneration of the critically endangered forest tree Nyssa yunnanensis

Climatic change-induced water stress has been found to threaten the viability of trees, especially endangered species, through inhibiting their recruitment. Nyssa yunnanensis, a plant species with extremely small populations (PSESP), consists of only two small populations of eight mature individuals remaining in southwestern China. In order to determine the barriers to regeneration, both in sit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 25 2  شماره 

صفحات  -

تاریخ انتشار 2005